非接触旋转密封故障声发射信号的诊断与识别研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:故障诊断;声发射;非接触旋转密封;状态识别;深度学习 中图分类号: TH165+.3 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202307046

Research on diagnosis and identification of acoustic emission signals fornon-contactrotary seal failures

CHEN Jinxin 1,2 ,LUJunjie¹,DINGXuexing²,XU Jie²,DING Junhua 2 , GAO De¹ (1.Ningbo KeyLaboratory of Advanced Seal Technology,Universityof NingboTech,Ningbo 3150o,China; 2.School of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 73Oo5O,China)

Abstract:Toaddresstheisseofunclearandchalengingidentificationofnoncontactrotatingsealfult signals,this studyestab lishedanexperimentalplatformandacousticemissiontestingsystem.It involved monitoringacousticemisionsignalsduringVari ousoperationalconditions,including normaloperationandsix typicalfaultscenariosof noncontactrotatingseals.Atotalof 14000 feature samples wereefectivelycollcted.Byapplying the Bayesianoptimizationalgorithmandincorporatingcontinuous wavelettransform,anadaptiveconvolutional neuralnetwork clasification modelwasconstructed.Subsequently,thediagnostic performanceofthefault recognitionmodel was analyzedusingconfusion matrices andt-distributed stochasticneighborembedding. Theresearchresultsdemonstratethat thismodelsuccesullyclasifiesndidentifiesevendiferentoperationalconditionsofoncontactrotatingseals,icludingnoraloperation,dryfrction,mixedlubrication,springfilure,endfacepiting,localspngfil ure,and end-face scratching,with an average recognition accuracy of 99.7023% . This achievement underscores the capability of effectivelyisolatingandidentifngsealfaultsourcesfromacousticemissonsignalsofnncontactrotatingsealsinnonstatioary, complex,andoverlappingenvironments,therebyestablishingasolidtheoreticalfoundationforpracticalengineeringpliations.

Keywords: fault diagnosis;acoustic emission;non-contact rotary seal;condition recognition;deep learning

密封装置直接决定了重大装备的热控效果和运行效率,其中机械密封在先进工业设备密封装置中的使用率达到约 90%[1] 。(剩余12688字)

monitor
客服机器人