利用响应面法优化人工神经网络的座椅频响函数预测模型与分析

打开文本图片集
中图分类号:TP393 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202311064
Abstract:Artificialeuralnetworkmodelinghasbeenprelimnarilyemployedtoinvestigateeffectsonthebiodynamicresponses. Inordertoevluatethevibrationtransmissoncharacteristicsoftheseatoupantsystemfurtherquantitativeresearchisded. Drawing fromalowfrequencyexperimentalinvestigationintowholebodyvibration,thisstudyisaimed todevelopanANNmodel withtheresponsesurface methodoptimization.Theage,stature,siting height,kneeheight,butock-to-knee,weight,gender, BMI,cushionthicknessandfrequencyareusedas network input toexplore thatthesehowtopredict transmissbilityfromtheseat baseto the seat pan.Based on the interaction between hyperparameters,the mapping relationshipbetween model hyperparameters and predictionperformance indexes wasestablished,andtheoptimalcombinationof hyperparameters wasoptimizedandobtained. Theresultssowthatthersonanefrequenciesitheverticalinlineandtheforeandaftcrosaxis ransmiibiliesfromsatbase toseatpandecreasedwithincreasingthicknessoffoamattheseatpan.BP-ANNmodelhas goodperformanceinestablishingthenonlinearrelationshipbetween theanthropometric,seat structurecharacteriticsandvibration transmissioncharacteristicsof seat-occupant system.Compared with BP-ANN model, the error of RSM-BP-ANN model is reduced by 25% and 18% respectively inpredictingvertialin-letransmsibilityandforanaftrosaxistrasmisslityfromseatbasetoeatpan.Andtslsopo videsanidea foradjustingtheparametersofneuralnetwork models toimprovethe predictionaccuracyofseat transmssibility.
Keywords:seat-occupant system;seat transmissibilities;aritificial neural network;response surface method交通运输环境中的各种振动会影响乘坐人员的 驾乘舒适性,高强度、长时间的振动暴露甚至会引岁健康问题[1]。(剩余14366字)