不均衡样本下轴承故障的LSGAN-SwinTransformer诊断方法

打开文本图片集
关键词:故障诊断;滚动轴承;不均衡样本;最小二乘生成对抗网络;Swin Transformer 中图分类号:TH165.3;TH133.33 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202308023
Abstract:Aiming atthe problems bearings workingincomplex environments,where faultdata aredificult toobtain in large quantitiesandtheseriousimbalancebetweentherationormaldataandfaultdataresultingininsuficienti-depthmodeltraining andlowdiagnosticacuracy,abearing fault diagnosis methodbasedonLSGAN-Swin Transformeris proposed.Theleast-squares generativeadversarialnetwork isutilizedtoexpandtheimbalancedorlackbearingdataset,andthewindowedself-atentivenet work is introducedforbearingfaultstate identificationTheproposed methodisvalidatedbyusingtwodatesets,andcompared with SGANand WGANrespectively.It isdemonstrated thatLSGANgenerates data training models with higheraccracy.The proposed Swin Transformer(Swin-T) model is compared withCNN,AlexNet and SqueezeNet undersmallsampleconditions, and the accuracy is improved by 34.85% , 13.45% ,and 12.95% ,respectively.The classification effect the model is evaluated byt-SNEvisualizationndtheresultsshowthat theLSGAN-Swin-Tmodelcanstillmettherequirementsinfaultdiagosiset terwhenthenumber trainingsamplesissmall,whichprovidesanewideafortheresearchbearingfaultdiagnosisundernbalanced data.
Keywords:faultdiagnosis;rolingbearings;unbalancedsample;leastsquaregenerativeadversarialnetwork;shiftedwindows transformer(Swin Transformer)
滚动轴承在各类机械设备中具有重要作用,在实际工程应用中,由于设备运行数据监测过程的工作环境复杂,信号一般呈现非平稳及非线性的特点,且部分状态数据难以大量采集,正常数据样本通常远远大于故障数据样本,数据之间比例严重失衡。(剩余19110字)