基于神经常微分方程的机械故障诊断方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TH133.33 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202307050

Abstract:Basedontheproblemsofpoorinterpretability,as wellasparameterincreaseand memoryconsumptioncaused byblind stackinglayers intraditionalfaultdiagnosis methodbasedondplearing,Neuralordinarydiferentialequation(NODE)isintro ducedintomechanicalfaultdiagnosis,theetworkstructureofNODEformachineryfaultdiagnosisisconstructed.Intheonstruct edstructure,thederivativesoftheparameterizedhiddenstatesoftheneuralnetworkareusedtoreplacethediscretesequencesof thespecifiedhiddenlayersByconstructinganonlinearrelationshipetwnfultdataandfulttypes,nordinarydiferentialequationsolvr(DEsolver)isusedtocompletetheclasificationofdiferentfaulttypes,andanendtoendfaultdiagnosismodelis formed.Theproposed methodisapliedtomechanicalfaultdiagnosis tobuildaspecificNODEnetwork model,andtheclassifica tiontaskofdiferentfaultcategoriesisaccomplishedtroughtheinputofultdata.Theconstructedmodelisappliedtothefaultdi agnosis ofspindlebearing intheaireraft engine,andcompared withthefaultdiagnosismethodbasedonresidual network model. Theexperimental resultsshow thattheconstructed modelandresidualnetwork model havesatisfactoryaccuracy.However,the constructed modelnotonlyreduces the memoryconsumption,but alsoreduces thenumberof model parameters byalmost five times.

Keywords:fault diagnosis;neural ordinary diferential equation;dynamics system;residual network

在大数据背景下,机械故障智能诊断的深入研究和应用迎来了新的机遇,特别是基于深度学习的机械故障诊断方法取得了很大的进展。(剩余10347字)

monitor
客服机器人