奇异谱分解和最大相关峭度解卷积在轴承故障声学诊断中的应用

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:复合故障;滚动轴承;奇异谱分解;最大相关峭度解卷积 中图分类号: TH165+.3 ;TH133.3 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202508013

Abstract:Theefectiveseparationofaultfeaturecomponentsisthecoreofrolingbearingcompositefaultdiagnosis.Underthe backgroundofstrongnoiseandmutualinterferenceandcouplingbetweenvarious faults,theacousticcompositefaultdiagnosisof rolingbearingisverychalenging.Inthispaper,acompositefaultacousticdiagnosis methodbasedonoptimizedsingularspectrum decomposition(SSD)and parameter adaptive maximum corelated kurtosis deconvolution(MCKD) is proposed.The envelope kurtosis isusedasanindicatortoassistSSDtoquicklydeterminetheoptialdecompositionlevel,soas toovercometheuertaintyoftheartificialempiricaldeterminationofthedecompostionlevelanddecomposethesignalintoultiplesingularspectralomponents.Combiningtheratiooffaultcharacteristicfrequencyenergyamplitudeasanindex,thetwosingularspectralcomponents containing themain faultcharacteristic informationareadaptivelyselected.The parameteradaptive MCKDisusedtofilterth se lectedoptimalcomponentandenhancethesignalfeature,andthefaultfeature frequencyis extractedbyenvelope spectrumanalysis torealizefaultdiagnosis.Theeffectivenessoftheproposedmethodisverifiedbythesimulationandexperimentalacousticsigalsof roling bearings.The research provides a new means for the composite fault diagnosis of rotating machinery.

Keywords:compound fault;rolling bearing;singular spectrumdecomposition;maximumcorelationkurtosis deconvolution

滚动轴承作为现代动力传动系统最重要的部件之一,已广泛应用于航空航天、交通运输、海洋工程等领域。(剩余14519字)

monitor
客服机器人