随机Bagley-Torvik方程的非平稳解析解

打开文本图片集
关键词:随机振动;分数阶导数;Bagley-Torvik方程;完全非平稳;Mittag-Leffler函数 中图分类号:0324;0321 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202309028
Non-stationary analytic solution of the stochastic Bagley-Torvik equation
KONG Fan1,XU Yijian1,GUO Wenjie²,HONG Xu1,CAO Hongyou³ (1.College of Civil Engineering,Hefei University of Technology,Hefei 23ooo9,China; 2.School of Transportation Engineering,East China Jiaotong University,Nanchang 33Ool3,China; 3.School of Civil Engineering and Architecture,Wuhan Universityof Technology,Wuhan 43Oo7o,China)
Abstract:TheBagley-Torvik(B-T)equationisadiferentialequationofmotionwithfractional(3/2)orderderivativeermsthat is applied todescribethemotioofarigidplateinNewtonian,viscousfluid.Inthispaper,wedevelop nonstationaryanalytic solu tionsoftheB-Tequationwhoseinhomogeneous termisastochasticprocess.TheB-Tequationistransformedintoahalforder state-space equation inmatrix formandeigen-analysis is performedtoobtaincomplex eigenvaluesand eigenvectors.Subsequently, the generalized coordinate transformation is introduced to decouple the equation intoa system of independent 1/2 -orderdifferential equations whicharesolvedbyLaplace transformtoobtainthesolutioningeneralizedcoordinates;Thegeneralizedcoordinate solu tionisconvertedintoanaturalcoordinatesolutiontoobtaintheimpulseorstepresponsefunction.Whentheinhomogeneous term oftheequationisastochasticprocess,theLaplace transformcanbeused toderivethetime-varying frequencyresponsefunction fromwhichtheanalytical solutionofthe nonstationarystochasticresponsecanbeobtainedbyrelyingontherelationship between theexcitationandtheresponse powerspectraldensity.Thecorectnessofthemethodisverifiedbynumericalcasesusingthe Spanos-Solomos fully non-statoionary stochastic excitation as an example.
Keywords:randomvibration;fractionalderivative;Bagley-Torvik equation;fullynon-stationary;Mittag-Leflerfunction
Bagley-Torvik(以下简称为B-T)方程是一种带3/2分数阶导数项的微分方程,由BAGLEY和TORVIK提出[1],用于描述刚性板在牛顿流体中的振动状态。(剩余13391字)