YOLOv8改进策略在焊接外部缺陷检测模型中的应用研究

打开文本图片集
中图分类号:TP391.4;TP183 文献标识码:A 文章编号:2096-4706(2025)12-0068-06
Research on the Application of YOLOv8 Improvement Strategy in Welding External Defect Detection Model
ZHU Yonghong,YANG Kaifu (Jingdezhen Ceramic University,Jingdezhen 333403,China)
Abstract: Aiming at the challenges of missed detection,false detection and arbitrary distribution of defect angles in smalltargetdefectdetectioninwelding extemaldefectimagedetection,anoptimizedand improvedmodelbasedonYOLOv8, YOLO-weld,isproposed.FirstlySPF-weldandC2f_DBB_CBAMmodulesaredesigned tonhancethecontextinfoation agregationabilityandmulti-scale featurefusioneffectofYOLO-weldmodel.Secondly,theOBBdetectionheadisintroduced toaccuratelycapturedirectionaldefects,soastoimprovethedetectionacuracy.Finalytheexperimentalresultshowthat compared with the YOLOv8 model, the YOLO-weld model improves the accuracy,recall,harmonic mean (F1) and mAP @0.5 by 3.2% 0 2.6% 0 4.0% and 3.9% ,respectively,which fully proves the effectiveness of the YOLO-weld model improvement.
Keywords: welding external defect identification; non-destructive testing; YOLOv8; C2f_DBB
0 引言
随着现代工业的迅猛发展,焊接技术已在众多工业领域中发挥着不可或缺的作用,保障焊接结构的坚固性和稳定性,已成为工业发展中的关键议题。(剩余8290字)