大型语言模型与学生在考试中的表现比较研究
——以通义千问为例

打开文本图片集
中图分类号:TP39;G434 文献标识码:A 文章编号:2096-4706(2025)12-0050-09
Comparative Study of Large Language Models and Student Performance in Exams -Taking Qwen asan Example
LING Dalian, FENG Shiying, CHEN Sinan, PAN Weiquan (SchoolofMathematicsandStatistics,YulinNormalUniversity,Yulin537ooo,China)
Abstract: The research focuses on the application potential of Qwen,anAI chatbot driven byLLM,ineducational assessment.Basedon2190fnalexaminationquestionsof“ProbabilityandMathematical Statistics”inauniversityfrom2019 to 2023,eighteachersdouble-blindscoretheQwen Model,theoptimized modelandthestudents'answers.Theresultsshowthat the performanceofQwen isstable in multiplechoicequestions,but thereis muchroomfor improvement intheanswerquestions. EspeciallyafterPromptEngineeringoptimization,theperformanceoftheanswerquestionsissignificantlyimproved.Teachers' scoresonAI-generatedcontentaremorestringent,andthescoresaresignificantlyaffectedbythequestiontypeandtheanswer subject.ThisstudyprovidesempiricalevidenceforAI-assistededucationalassssment,emphasizingtheimportanceofupdating standards and exploring new models.
Keywords:LLM; Qwen; educational assessment; AI-assisted learning
0 引言
随着信息技术的迅猛发展,人工智能(AI)聊天机器人的应用在教育领域正逐渐普及。(剩余13820字)