基于FY-4A卫星的沙尘暴识别方法研究与比较

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN92;P405 文献标识码:A

文章编号:2096-4706(2025)12-0001-06

Research and Comparison of Dust Storm ldentification Methods Based on FY-4A Satellite

ZHANG Xiang (InnerMongolia Autonomous Region Meteorological Data Center,Hohhot Oloo51,China)

Abstract: Satelite remote sensing technology is now widely used to monitor the dust storm process in space and time. Fengyun-4MeteorologicalSatelite(FY-4A)isanewgenerationof geostationaryremotesensingmeteorologicalsatelitesin China,ad itsMulti-channel Advanced GeosynchronousRadiation Imager (AGRIplaysanactiverole industidentificationin Asia.Severaldust recognitionmethods basedonsatelitedataincludingdustrecognition method basedonRGB images,BTD (Brightness TemperatureDierence),NDDI(NormalizedDiference Dust Index)andMachine Learing-baseddustetrieval methods,areapliedtotheL1dataof theFY-4AsateliteAGRItorealizetheidentificationofust.Through individualcase analysis,theexperimentalresultsarefurtherstudiedandcompared.Theresultsshowthatmostofthedustidentfcationmethods appliedtothFY-4Asatelitecandstinguishthesurface,cloudsandust,andthnidentifythedust.Fortheidentifcationethod basedophysicalcaracteristics,duettedifereceintebandsofdifrentsatelites,tetresholduiversalityis poo,and there arecases ofsmall dustidentificationand misjudgmentof dust in someareas.Basedonthe Machine Leaming method,it canefectivelyidentifythdustange,whichhasstrongapplicabilityandbroadaplicationprospects.Fialltheapplicationof satelite-based duststormidentificationmethodsissummarized,and further prospects fordustidentificationare given.

Keywords: FY-4A satellite; dust storm; RGB image; BTD; NDDI; Machine Learming

0 引言

沙尘暴是一种灾害性的天气现象,在全球气候变化中扮演着重要的角色,对人类的健康和生态系统产生了非常不利的影响,有可能造成人员伤亡和经济损失[1-2]。(剩余7708字)

目录
monitor