基于知识回放的即时软件缺陷预测增量模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:即时软件缺陷预测技术可以实现细粒度代码变更的即时缺陷预测,对于提高软件代码质量和保证软件可靠性具有重要意义。传统静态软件缺陷预测模型在处理即时软件数据流时会存在“知识遗忘”的情况,从而导致模型泛化性能较差的问题。为此,提出一种基于知识回放的即时软件缺陷预测增量模型方法。首先,通过知识回放机制存储模型参数和随机样本,实现对旧知识的学习;其次,使用分布式训练框架在本地设备上对即时软件数据流进行增量学习,通过重构实现模型的即时更新;最后采用知识蒸馏技术,构建全局增量预测模型。(剩余17210字)

目录
monitor