基于潜在空间生成器的联邦知识蒸馏

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:用户的异质性对联邦学习(FL)构成了显著挑战,这可能导致全局模型偏移和收敛速度缓慢。针对此问题,提出一种结合知识蒸馏和潜在空间生成器的联邦学习方法(FedLSG)。该方法通过中央服务器学习一个搭载潜在空间生成器的生成模型,该模型能够提取并模拟不同用户端样本标签的概率分布,从而生成更加丰富和多样的伪样本来指导用户端模型的训练。(剩余19239字)

目录
monitor
客服机器人