注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:用户的异质性对联邦学习(FL)构成了显著挑战,这可能导致全局模型偏移和收敛速度缓慢。针对此问题,提出一种结合知识蒸馏和潜在空间生成器的联邦学习方法(FedLSG)。该方法通过中央服务器学习一个搭载潜在空间生成器的生成模型,该模型能够提取并模拟不同用户端样本标签的概率分布,从而生成更加丰富和多样的伪样本来指导用户端模型的训练。(剩余19239字)
登录龙源期刊网
购买文章
基于潜在空间生成器的联邦知识蒸馏
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00