融合注意力机制的3DV-Net肺结节检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标志码:A 文章编号:1007-2683(2025)04-0123-11

3D V-Net Detection of Pulmonary Nodules with Integrated Attention Mechanisms

WEI Haiyue, CHEN Hailong, XU Xinyao, ZHANG Xiuxia, ZHOU Xinpeng (Schoolof ComputerScienceand Technology,Harbin Universityof Science and Technology,Harbin15Oo80,China)

Abstract:Pulmonary nodulesplayacrucialroleintheearlydiagnosisandtreatment of lungcancer.Toadresstheexistingissues of misedandfalsedetectionsincurent pulmonary noduledetectionalgorithms,weproposea3DV-Netmodelthatincorporatesan atentionmechanismforimprovedpulmonarynoduledetection.Initiall,wedevelopedthe3DV-Netmodelforbasicpulmonarynodule detection,ensuring highaccuracyinidentifyingnodules.Subsequently,weemployedtheConvolutionalBlock AttentionModule (CBAM)toehancethefeaturesofthegeneratedimagesbyconsideringbothchanelandspatialinformation,therebyimprovingmodel performance.Finally,wetrainedandevaluatedthemodelusing thepubliclyavailableLUNA16dataset.Theexperimentalresultsshow thatthe proposed3DV-Netmodel,whichintegratesteaentionmechanism,improvesthedetectionperformanceinpulmonaryodule detection.The intersection over union (IoU)between the predicted results and the true labels reached 84.88% ,and the Dice loss achieved -90.43% ,demonstrating the feasibility of the model and the accuracy of the detection.

Keywords:pulmonary nodule detection;deep learning;medical image processing;3DV-Net network;atention mechanism

0 引言

肺癌是全球范围内发病率和致死率最高的癌症之一[1],肺结节作为肺癌早期诊断和治疗的重要标志物,对于提供准确的诊断和个体化的治疗方案具有关键性作用[2]。(剩余13882字)

monitor
客服机器人