融合改进PSO与TCN的核电冷却水泵故障诊断模型

打开文本图片集
关键词:冷却水泵故障诊断;时间卷积网络;粒子群算法;收敛速度;故障诊断精度DOI:10.15938/j. jhust.2025.04.003中图分类号:TP391.4 文献标志码:A 文章编号:1007-2683(2025)04-0018-12
Fault Diagnosis Model for Nuclear Power Cooling Water Pump by Integrating Improved PSO and TCN
PENG Junjie’,LI Yang², HOU Yimin³ (1.Taishan Branch,China Nuclear Industry Maintenance Co.,Ltd.,Jiangmen 529228,China; 2.School of Mechanical Engineering,Northeast Electric Power University,Jilin 132O12,China; 3.School of Automation Engineering,Northeast Electric Power University,Jilin 132O12,China)
Abstract:A nuclearpower cooling water pump fault diagnosis model(AMsPSO-TCN)isproposed,which integrates improved PSOandTCN,toaddresstheisuesof variableperatingconditionsanddificultyinfault diagnosisofnuclearpowercoingwater pumps.This modelutilizesanAdaptive Multi Swarm Particle Swarm Optimization Agorithm(AMsPSO)tooptimizeandadjust the thresholdandbiasoftheTemporalConvolutionalNetwork(TCN),andusestheoptimizedTCNforfaultdiagnosisofcoolingwater pumps.Intheexperiment,theAMsPSOalgorithmwasfirstcomparedwith existing improvedPSOalgorithmsforbenchmark function optimization.TheresultsshowthattheAMsPSOalgorithmhasbeteroptimizationaccuracyandfasterconvergencespeed.Thenusing the measureddataofacoling waterpumpinanuclearpowerplantasexperimentaldata,the AMsPSO-TCNmodelimproved he fault recognition accuracy by more than 8. 1% compared to existing models,reaching 98.3% .Therefore,the AMsPSO-TCN model is an effective fault diagnosis model.
Keywords:coling waterpumpfault diagnosis;temporalconvolution network ;particle swarm algorithm;convergencespeed;fault diagnosis accuracy
0 引言
随着核能技术的发展,核电在发电领域比重逐渐增加。(剩余14056字)