改进FasterR-CNN的变电站电气主接线图图元检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:变电站;接线图;图元检测;FasterR-CNN优化算法;深度学习

DOI:10. 15938/j. jhust. 2025.04.005

中图分类号:TP391.4;TP183;TM63 文献标志码:A 文章编号:1007-2683(2025)04-0039-09

Improved Faster R-CNN Forsubstation Electrical Main Wiring Diagram Element Detection

IG Bing',DU Yuefan1, JIN Yao’, ZONG Xiangrui', JIN Hua²,LIU Tanjing²,WANG Cong 3 (204 (1.High Voltage Branch, State Grid Tianjin Electric Power Company,Tianjin 3OO232,China; 2.School of Control and Computer Enginering,North China Electric Power University,Beijing 102206,China; 3.School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China)

Abstract:Aimig atthe problems oflowaccuracyofelementdetectionandhighfalsedetectionrateandleakagerateofsmaltarget elements nelectricalmainwiringdiagramsofsubstations,amethodfordetecting elements intheelectricalmain wiringdiagrasof substationsbasedoimprovedFasterR-CalgoritisproposedFirst,adeepresiualnetworkstructureisintroducedtoeplace theoriginalfeatureextractionnetworkofFasterR-CNNtoenhancethefeatureextractioncapabilityofmulti-scalediagramelement targets.Then,afeaturepyramidnetworkisintroduced tofusetheshalowfeatureinformationwiththedepfeatureinforationto improvethedetectionperformaneoftheeenetworkforsalltargetsFinally,asedonthescaledistrbutioncharacteristsfsal targets,theparametervaluesofAnchorreresetintheregionalproposalnetworktofurtherimprovethedetectionperformancofsal targets.The experimental results show that the average detection accuracy of the improved algorithm reaches 88.9% ,which is 4.2% (2号 higher thanthatof theoriginal algorithm,and ithas higherdetectionaccuracyandlower falseand missddetectionrates.

Keywords:substation;wiring diagram;element detection;faster R-CNN optimization algorithm;deep learning

0引言

变电站电气主接线图是表示站内一次设备连接关系的电路图纸,主要用于站内电气设备的选型、安装、调试运行维护以及故障分析。(剩余13425字)

monitor
客服机器人