改进2.5DU-Net的骨盆与股骨联合分割方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:深度学习;卷积神经网络;注意力机制;CT影像;髋关节分割DOI:10.15938/j. jhust.2025.04.012中图分类号:TP391.4 文献标志码:A 文章编号:1007-2683(2025)04-0111-12

Enhanced Method for Pelvis and Femur Joint Segmentation Using Improved 2. 5D U-Net

IU Zhaowen1, HE Bingtao¹, YANG Lei², ZHANG Ruiqi,KONG Zhe',GUO Ziyu 1 , SONG Da 2 (20号 (1.College of Computer and Control Engineering,Northeastern Forestry University,Harbin 150040,China; 2.Department of Orthopedics,The First Hospital of Harbin Medical University,Harbin 15Oo01,China)

Abstract:Aimingattheproblemofpoorclarityof hipCTimagesandrelativelynarowjointspace,whichleads tothedifcultyof pelvisandfemurjointsegmentation,animproved.5DU-Netsegmentationmethodisproposed.Themethod processisdivided into three steps:(1)Adata normalization methodisproposedtotransformthe3Dhipsegmentationtask intoa2Dsegmentationtaskusing a2.5Dsegmentationmethod.(2)Using theU-Netnetworkmodelasthebackbonenetwork,theatentionmechanismisintroducedto enhancetefeatureextractionabilityofthenetwork,andthepointswithpoorsegmentationaccuracyareselectedfromtheclasification probability map for individual training,thus correcting the prediction results.(3) The proposed LMFD loss function is employed to solve thetrainigsampleclassifcationimbalanceproblem,whilemonitoringthenetworktrainingtoimprovethemodeljintsegmetation performance.Theresultsdemonstratethattheproposedmethodoutperformsthebaselinenetwork model(3DU-Net)withDice similarity coefcients (DSC) of 94. 75% and 95.74% ,and Hausdorff distances 95 (HD95) of 1.29 mm and 1.59 mm,respectively, for the task of joint segmentation of the pelvis and femur.

KeyWords:deep learning;convolutional neural network;attention mechanism;CT images;hip joint segmentation

0 引言

计算机辅助诊断已经成为骨科手术中必不可少的部分[1-2]。(剩余18173字)

monitor
客服机器人