改进的YOLOv5 双影像光伏故障小目标检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:利用无人机对光伏组件进行故障巡检通常从可见光和红外光两种场景分别处理和检测。该文提出基于残差神经网络ResNet50和改进的YOLOv5故障检测方法,实现对两种影像图像高精度自动分类和故障检测。针对红外数据进行色度变换去除太阳反光而保留热斑,针对可见光数据采用锐化的方式凸显异物、裂痕等小目标,使用不同的YOLOv5目标检测算法实现可见光下小型异物故障和红外光下热斑故障的快速检测和定位。(剩余10758字)

目录
monitor