注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:通过构建模型对锂离子电池剩余使用寿命进行预测,并探究温度及网络参数对所构建模型预测精准度的影响,进而提高模型的预测精准度。 提出自适应噪声完全集合经验模态分解(CEEMDAN)和一维卷积神经网络(1D CNN)与双向长短期记忆(BiLSTM)神经网络相结合的锂离子电池剩余寿命预测方法。选取容量作为健康因子,然后利用CEEMDAN对复杂不平稳数据进行分解,得到稳定的分量。(剩余14279字)
登录龙源期刊网
购买文章
多角度基于CEEMDAN-CNN-BiLSTM模型的锂离子电池RUL预测
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00