基于相似日选取和PCA-LSTM的光伏出力组合预测模型研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘 要:构建一套融合主成分分析方法(PCA)、改进的K-均值聚类方法、动态时间规整算法(DTW)和长短期记忆神经网络(LSTM)的光伏出力组合预测模型。在运用PCA法提取气象要素的主成分因子的基础上,创新性地联合使用改进的K-均值聚类方法和DTW算法生成内部关联程度高且与待预测日的天气特征相近的历史日样本集;然后,结合LSTM神经网络,构建基于相似日选取的光伏发电功率预测模型,最终实现了云南某光伏电站发电功率的精准预测。(剩余12692字)

目录
monitor