基于RGE—UNet模型的甘蔗蔗梢识别研究

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:

传统的甘蔗蔗梢图像分割算法步骤烦琐、整体优化较为困难,采用在小样本上仍表现优异的UNet网络,将模型原有主干网络替换为ResNet50来简化模型训练过程,上采样部分用Ghost轻量级模块替换普通卷积模块以减少模型的参数量和浮点数计算量,同时在编码器和解码器之间加入SE注意力机制对提取到的特征权重进行优化,最终得到一个轻量级的RGE—UNet蔗梢分割模型。(剩余15025字)

目录
monitor