基于改进YOLOv8m的小麦仓储粮虫检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:

害虫是造成仓储小麦损失的重要因素之一,及时检测害虫并采取有效手段能够减少仓储小麦损失。传统人工检测害虫方法存在人工因素影响较大、速度慢的问题,基于深度学习的仓储粮虫检测方法虽然耗时短,但存在模型较大、速度和准确率二者难以平衡的问题。故首先选取YOLOv8m算法作为基础进行改进,接着以更轻量化的网络Shufflenetv2代替Darknet—53;其次,在主干网络末端添加Squeeze—and—Excitation Networks注意力机制获取高质量的特征图,有效提高检测精度;最后,采用WIoUv3 Loss为YOLOv8m的回归损失函数,提高检测的精度和速度。(剩余14798字)

目录
monitor