基于CNN和近红外光谱的蜜柑SSC预测模型研究

打开文本图片集
摘要:针对抽样化验等传统果实品质检测方法具有破坏性以及现有回归预测模型存在光谱信息损失和特征提取不够完备等问题,提出基于近红外光谱分析技术和一维卷积神经网络(1D-CNN)实现蜜柑果实可溶性固形物含量预测的模型和方法。采集蜜柑的近红外光谱和测定可溶性固形物含量建立数据集。并通过试验对比确定使模型性能最优的网络结构深度、卷积核尺寸和数量、有无批量归一化(BN)层、池化方式、全连接层深度和Dropout值等网络结构参数,形成包含2层卷积层、2层BN层,2层最大池化层和2层全连接层的一维卷积神经网络,并设置Dropout值为0.2。(剩余12944字)