基于改进YOLOv5的轻量级黄花成熟检测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

摘要:黄花菜具有较短的采摘周期和相对严格的采摘要求,针对传统人工采摘效率低、主观性高的问题,提出一种基于深度学习的SSH-YOLOv5黄花成熟度检测算法。以YOLOv5模型为基础,结合轻量级网络ShuffleNet V2基本残差单元压缩网络模型大小,提升模型目标检测速度;引入SE Net通道注意力机制模块,增强模型对有用特征信息的敏感度,提高目标检测精度;将普通卷积替换为深度可分离卷积模块,进一步减少模型计算量。(剩余17667字)

目录
monitor