面向不同标签与域配置的统一跨域故障诊断方法

打开文本图片集
关键词:智能故障诊断;多场景跨域诊断;统一方法;迁移学习 中图分类号: TH165+.3 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202508021
Unified cross-domain fault diagnosis method towards different label and domain configurations
ZHANG Yuteng',LYU Yufan', KONG Yun1,2,3 ,CHEN Ke1,4 , YAN Zhiwu4, DONG Mingming', CHU Fulei5 (1.School of Mechanical Engineering,Beijing Institute of Technology,Beijing 10oo81,China; 2.State KeyLaboratoryofMechanicalTransmisionforAdvancedEquipment,Chongqing University,Chongqing 444,China; 3.TangshanResearchInstitute,BeijingIstituteofTechnology,TangshanO6315,China;4InnerMongoliaFirstMachneryGroupCo, Ltd.,Baotou014032,China;5.Departmentof Mechanical Enginering,Tsinghua University,Beijing 10084,China)
Abstract:Reliablefaultdagosisisucialtoesuingthesafeandeficientoperatioofigndindustrialuipent.Co-i inteligentdagnosistechnologiesbasedonusuperviseddomainadaptation(UDA)havedemonstratedpromisingapicationprospctsn scenariossuchaso-eqpmentandvaableorkingtrasferdiagnosisonditos.However,eirfectiveesshiglyeliesonpecific priorassmptiosregardingteinter-domainlabelelatiosipsanddomainonfiguratios,ichlargelyestritstegeneralizabilityad practicalityofUtchqusiactalidustrialfultdiagosisseariosstebeissstspapepropesdomainfaultdagnosisfmeorkaplicabletodiferentlbelanddomaiofiguratiosTeproposedframekcostructsapredictielass confusio(PC)biassharedacrossmultiplesenariostoguidecross-domainknowledgetransfer,enablingadaptationtovarioustransfer diagnosticscenariosToacuratelymeasurethetendencyofthePCCbias,aprototypesimilaritybasedfaultdiscriminationmethodis developed,whichenancesclasificationrobustessandprovidesreliablepredictiondistributionstoestimatetheCCbias.Tenalabel smothing-basedprobabilitycalibrationmethodisdsigedforprobabilityregularzationallvatingtheunderestimationofteCCbias causedbyovercofidentpredictionExpermetalvalidatioesultsoaplanetarygarboxtrasmisiosystematasetdmonstratethathe proposed method achieves an average diagnostic accuracy of 98.37% across four cross-domain diagnostic scenarios with different label and domainconfigurations,outperformingstate-of-the-artapproachesandfullyverifyingitsgeneralityandsuperiority
Keywords:intelligent fault diagnosis;multi-scenario cross-domain diagnosis;unified method; transfer learning
在现代工业体系中,航空发动机、风力发电机、电力机车等高端装备是航空航天、能源交通等关键领域的核心,其运行状态直接关乎工业生产的安全性与稳定性。(剩余19773字)