面向机械振动信号的自主信号处理大语言模型智能体

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:大语言模型;神经符号;可信人工智能;多智能体;决策链;故障诊断 中图分类号: TH165+ 3 文献标志码:A DOI:10.16385/j.cnki.issn.1004-4523.202508034

An LLM-based agent for autonomous signal processing mechanical vibration signals

LI Qi¹², ZHANG Xinran1,HU Wenyang',ZHANG Feibin1,QIN Zhaoye1, CHUFulei' (1. University,Beijing1oo084,China; 2. Haven O6511,USA)

Abstract:Vibrationsignalaalysisisaoerstonemachineconditionmoitoringfaultdiagnosis,yetitfacesacentraldilma Tradtionalexpertsytemsverigidwokflows,whileendtonddepmodels,despiteteiradaptiveleagabilts,suferrobeing ‘blackboxes’withinsuicientreproducibilityTispaperintroducesaneuro-symbolicmulti-agentframeworkforautonomoussigal procesing.Theframeworkutilizesalargelanguagemodel(LLMasacentraldecision-maker,coordinatingatoboxinterpretable, symbolicsignalprocsingperatosteableatonoousvibratioignalaalysisnddagnsisTheframeorkadoptsaaEeute ReviewmultiagtcitetutieatielytizetesigalprocesigdisionchainTsuetegicalosistectelaing preventicoctoeatorall,allatseallyuatedsoimesildanticrafoatooe Specifically,teyareconstraiedbysmantiifoationfortheMtocompreendValidationonbaringfaultdiagnosisdatasetsshows thathisframeorkanautoomouslygeneatesigalprocessngdecisionchainsithlearpsicalmeanngassuefullypoduced expert-evel,intepretabledagostcalgoritssuchas‘veloespectru-kurtosis’Insingle-doaintestsntegaUesity bearingdataset,theGemini-2.5-pro versionreached anaccuracy 97.8% .Incross-domain testson theUniversity Ottawa variable-speed dataset,the framework,trained solely on‘acceleration’‘deceleration’conditions,achieved 99.3% accuracy on unseen conditions, provingitsgeneralizationabilityThisreseachprovidesapromsingneparadigmforbuildingtrustworthy,eproducible,salableext generation intelligent diagnostic systems.

Keywords:largelanguagemodel;neuro-symbolic;trustworthyAI;multi-agent;decisionchain;faultdiagnosis

振动信号分析是机械设备状态监测与故障诊断的核心技术之一。(剩余19967字)

目录
monitor
客服机器人