知识图谱构建研究综述

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2025)08-0117-10

Abstract:As a structured semantic knowledge base,the Knowledge Graph plays a key role in many fields such as informationretrval,intellgntquestionasweringandcommendationsystems.Thisapeviews tetheecorecopoents of KnowledgeGraphconstruction,informationextraction,knowledgefusion,andknowledgerasoning.Informationetraction technologyhasdevelopedfromrule-basedmethods toMachineLearing model,andthentoDepLeaingmodel.Itiscurently evolvingtowardsajoint EntityRelationshipExtractionmodel thatreduces erorpropagationandimprovesaccuracy.Inthepart ofknowledgefusion,thestrategiesofentitylinkingandkowledge mergingarediscussed,andtheproblemofentityrecogition is solved byentitydisambiguationand entity alignment.The sectionon knowledge reasoning analyzes the reasoning methods basedonrules,epresentationlearningandDeepLeaming,anditsaplcationinnewknowledge discoveryanderorinformation corection.Finallytehallengesinteonstuctionprocessaepontedout,andsuggestiosforutureesearchditiosare proposed to promote the development of knowledge graph research and application.

Keywords: Knowledge Graph; information extraction; knowledge fusion; knowledge reasoning; Deep Learning

0 引言

20世纪90年代,计算机网络在世界各地得到普及,网络信息资源日渐丰富,信息数据呈现规模海量、类型繁多和快速增长等特征。(剩余24060字)

monitor