基于TimeGAN的轨道交通LTE-M故障预测研究

打开文本图片集
中图分类号:TP391 文献标识码:A 文章编号:2096-4706(2025)08-0010-06
Abstract:The Long TermEvolution of Metro (LTE-M) network fault prediction datasetof rail transit has the problems ofunbalancedsamplesandsmallamountofsampledatawhichimpacttheacuracyoffault prediction.Inordertosolvethe above problems,this paper proposes aresearch methodofLTE-Mfault predictionofrail transitbased onconditionalTime-series Generative Adversarial Networks (TimeGAN).Bydefiningdynamic autoencoderandstatic autoencoderinTimeGANmodel,this method furtherexploresthedynamicandstaticcharacteristicsofLT-Mfaultdataofrailtransit,andintroducesGELUactivation functionnthepotentialspaceofgeneratoranddiscriminatortoaceleratemodelconvergenceandgeneratesyntheticdatacloser toreal data,thusefectivelyalleviating the problemofunbalancedfaultdatasetandsmalldatavoume.Theexperimentalresults showthatwhenthedatasynthesizedbytheTimeGANmodelisusedforfaultpredictiontraining,itcanproducebeterediction results than the original data.
Keywords:rail transitLTE-M;fault prediction;time-series;TimeGAN
0 引言
随着新一代移动通信的飞速发展,轨道交通通信基础设施规模也迅速扩展,LTE-M网络作为轨道交通网络关键组成部分,其复杂性也随之增加。(剩余7847字)