基于改进Y0L0v10的轻量化交通流量检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4 文献标识码:A 文章编号:2096-4706(2025)08-0077-06

Abstract:Inorder tosolvetheshortcomingsoftraditional trafficflow statisticsalgorithms inreal-time,stabilityand accuracy,atargetdetectionalgorithmbasedonimprovedYOLOv10algorithm is proposed.TheimprovedYOLOv10algorithm is combined withDepSORTtracking technologytoconstructanew traffcflowstatisticalarchitecture.The traffcscene video oftheactualroadconditioniscollctedtoverifytheaccuracyofthe framework.Theexperimentalresultsshowthatcompared with the originalalgorithm,theaverage accuracyoftheimprovednewalgorithm invehicle detectionis improved by 1 % ,and the statistical accuracy of video traffic flow is improved by 3 . 4 6 %

Keywords: computer vision; traffc flow statistic; YOLO; DeepSORT; intelligent transportatiol

0 引言

在城市化进程持续推进的过程中,城市空间规模呈现出不断增长的态势。(剩余7527字)

monitor