YOLO-IRLight:基于YOLOv8的轻量级无人机红外小目标检测算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP3191.4;TP301.6 文献标识码:A

文章编号:2096-4706(2025)08-0046-09

Abstract:To address theisues of low detection accuracy and highcomputational load in infrared smalltarget detection from UAVaerial perspectives,a lightweight infrared smalltargetdetectionmodel,YOLO-IRLight,is proposed basedon YOLOv8s.Thismodelintroduces theEMA(EffcientMultiscaleAttention)Atention Mechanism toenhancefeatureextraction capabilities.APConv-C2f module isadded tothe neck of the network toreducecomputationalloadand fuse scale sequence features,andaP2detectionlayerisincorporatedtootimizethenetworkstructure,therebyimprovingsmaltargetdetection performance.Aovellgtweightdetectionead,Goup-Detect,isesigned,andtheNWD(NoaledussnWten Distance)lossfunctionisincorpoatedintothelossfunctionof themodelinalinearcombination maer.Experimentalresults on the open dataset show that compared to the original YOLOv8s, the proposed model improves detection accuracy ( m A P@ 0 . 5 ) ( by 1 . 7 % ,reduces the number of parameters by 4 5 . 9 % ,decreases computational complexity (GFLOPs) by 3 3 . 5 % ,and increases F1 score by 0 . 9 % .The improved algorithm significantly outperforms traditional algorithms,with notable improvements in detection accuracy compared to current mainstream algorithms.

Keywords: Small Target Detection; infrared target; lightweight; YOLOv8; network optimization

0 引言

目标检测是计算机视觉的重要任务,在各种领域如搜索救援、智能监控中都有广泛的使用。(剩余13247字)

monitor