基于条件扩散模型的未测量流域径流预测方法

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP391.4;TP183 文献标识码:A 文章编号:2096-4706(2025)08-0071-07

Abstract: Deep Learning becomes apowerful tool for runoff prediction,but in ungauged basins,the lack of flow observation data makes model trainingand prediction usuallyrequiretheapproachof Transfer Learning.However,thetarget basinoftendoesnothaveenoughdataforfie-tuning,whichmakes itdiffculttocalibratethemodelparameters.Therefore, this paper proposes anungauged basins runof prediction methodbasedonconditional diffusion model.The method includesa forwardnoisingprocessandareversedenoisingprocessThedenoisingmodelis trainedinthesourebasinandthenthedatais recoveredfromthenoiseintetargetbasinasthepredictionresultInadition,thedenoisingprocesisguidedbytheconditional datancludingmeteorologicaldriversandhistoricalrunoffndtheTrasformerlayerisintroducedintothedenoisingmodelto capture the dependenceof ime andfeatures.Throughthecross-validation experimentontheCAMELS-US dataset,theresults show that the method has superiority.

Keywords: runoff prediction; ungauged basins; Transfer Learning; conditional diffusion model; CAMELS-US

0 引言

径流量能够反映特定流域内水文、王壤和地质特征,是综合反映流域内自然条件和人类活动的重要指标。(剩余7609字)

monitor