基于Node2Vec-LGBM模型的CBA球员位置预测

打开文本图片集
中图分类号:TP181 文献标识码:A 文章编号:2096-4706(2025)08-0065-06
Abstract:With the accumulation of sports data and therapid development of Artificial Intellgence technology, it is particularly important touse Big Data and Machine Learming methods tooptimize player position prediction. However, traditionalmethodsoftenignorethecomplexstructuralrelationshipsbetweenplayers,whicharecrucialforpositionprediction. Therefore,this paper proposes a player position prediction model based onNode2Vecand Light Gradient Boosting Machine (LGBM).Through data mining andanalysis,thebasicdataofCBAplayers inthre seasons are crawled,andtheLGBMmodelis usedtopredictthepositionofplayers.Combied withhyper-parameteroptimizationandNode2Vec graphembeddngalgorithm, the accuracyof the modelitself is further improved.Theexperimentalresults show thatthe modelcan notonlyeffectively optimizetheteam'sieupandtacticalarrngements,butalsoprovide strongsupportfor thetamtoenhanceitscompetitiveess and overall performance.
Keywords: Machine Learning; Light Gradient Boosting Machine; Node2Vec; prediction model
0 引言
随着比赛数据的逐渐增多和分析技术的进步,对球员位置的分析已成为运动研究的重要方向。(剩余8578字)