基于CNN-LSTM-CBAM模型的地震前兆重力异常检测研究

打开文本图片集
中图分类号:TP183;TP39;P315. 7 2 + 6 文献标识码:A
文章编号:2096-4706(2025)08-0041-05
Abstract: This research proposes an anomaly detection method in earthquake precursor gravity data based on the CNNLSTM-CBAMmodel.The anomalydetection inearthquake precursor gravitydata is crucial for improving the timelinessof earthquakepredictions.Itextracts spatial features ofthegravitydata using CNN,anduses theLSTMtocapture long-term dependencyrelationships inthe time series.The CBAMisintroduced toenhance the model's abilityto focusonimportant features,thereby improving anomaly detection performance.Experimental comparisons with the anomaly detection methods suchas AutoEncoder,CNN,LST,andCNN-LSTmethodsshowthattheproposedmodelinthispaperoutperformsotrsin metrics such as MAE,MSE,RMSE,and .This model effectively identifies potential and abnormal dataand providesa reliable foundation forearthquakeriskmanagementandearly waming.Thisresearchofersnewinsights into theanalysisofearthquake precursor data.
Keywords: earthquake precursor anomaly; gravity data; time series; LSTM; Atention Mechanism
0 引言
在印度板块与欧亚板块相互作用及太平洋板块影响下,中国是板块内地震活动最强烈、频率最高的地区之一{I]。(剩余6966字)