基于颜色分布信息的烟叶烟碱含量预测模型评估与比较

打开文本图片集
关键词:颜色分布;烟碱预测;回归模型; 近邻;无损检测中图分类号:TP391.4;TP181 文献标识码:A 文章编号:2096-4706(2025)08-0132-07
Abstract: This paper uses optical imaging technology to establish an image dataset of abatch oftobacco leaves with knownnicotinecontent,anduses theneuralnetworkmodelU2-Nettoaccuratelydetecttobaccoleaftargets.Byextractingthe color distributioninformationofthetobaccoleaf targets,four typicalMachineLeamingalgorithmsofRF,XGBoost,MP,and KNNareusedtomaketheregressonpredictionforthenicotinecontentof tobacco leaves,respectively.Theresults indicate that theKNNmodelcanefectivelyutilizecolordistributioninformationtoaccuratelypredictthenicotinecontentoftbaccoleaves. The value of determination coefficient is as high as 9 7 . 4 6 % ,theMSE isaslow as O.020 2,and the MAE is as low as 0.075 6,indicatingasigncantcorelationbetweentobaccoleafcolordistributioniformationandnicotinecontent,andprovidingan effective nondestructive detection method for nicotine.
Keywords: color distribution; nicotine prediction;regressionmodel; K-Nearest Neighbor;nondestructive testing
0 引言
烟草作为一种重要的农作物,广泛应用于烟草制品的生产,对于全球经济和人们的日常生活有着重要的影响。(剩余6969字)