基于改进Y0L0v11的水果成熟度检测

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TP3191.4;TP183 文献标识码:A文章编号:2096-4706(2025)08-0034-07

Abstract:Aimingat theexisting problems of insufficient accuracy,the difficultyof identificationundercomplex backgrounds,ndthebvious limitationsof traditionalmethods infeatureextractioninfruitripenessdetection,afruitripenes detection algorithm (AGLU-YOLOv11) basedon improved YOLOv1 is proposed,to meet the demands for effcient data and reliable colection in fruit ripeness detection.AGLU-YOLOv11 designs the C3k2_AddBlock_CGLU module byoptimizing the C3k2 module in the YOLOv1l backbone network and integrating CATM(Conv Additive Self-Attention) and CGLU (Convolutional Gated Liear Unit),and significantlyenhances feature extraction capabilityand adaptabilityof multi-variety andmulti-stageripenessfruits.Atthesame time,theAFCAAtention Mechanism is introduced inthefeature fusion stage to strengthen global feature expresionand adaptability tocomplex backgrounds,andachieve eficient fruit quality detection andlabeling.Experimental results showthat AGLU-YOLOv1lperforsbeterin precision,robustnessand multi-saleobject adaptability than other detection models inPrecision,Recall, mAP @ 0 . 5 and 1 n A P@ 0 . 5:0 . 9 5 indicators,and can better meet the demands for identifying fruit ripeness.

Keywords:YOLO;ObjectDetection;CGLU;CATM; fruit ripenessdetection

0 引言

社会经济的飞速发展下,人们的生活水平显著提高,水果作为人类膳食结构中的重要组成部分,不仅为人体提供丰富的维生素、矿物质和膳食纤维,还在促进免疫力和预防慢性疾病中发挥着重要作用[]。(剩余9445字)

monitor