注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:启动子的分类已成为一个有趣的问题,并引起了生物信息学领域许多研究人员的关注。为解决这一问题,进行了多种研究,但其性能结果仍需进一步改进。为此,基于机器学习和深度学习算法,引入了一种智能计算模型,即iPSI(2L)-XGBoost,用于区分启动子及其强弱。所提出的计算模型iPSI(2L)-XGBoost能够在两层中分别达到86.79%和78.64%的交叉验证精度,就所有评估指标而言,拟议的iPSI(2L)-XGBoost模型比其他模型获得了有效的成功率。(剩余8816字)
登录龙源期刊网
购买文章
基于XGBoost的启动子及其类型识别的两层预测器
文章价格:5.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00