基于遮挡感知的安全帽细粒度穿戴检测算法

打开文本图片集
DOI:10.16652/j.issn.1004-373x.2025.18.027引用格式:,,,等.基于遮挡感知的安全帽细粒度穿戴检测算法[J].现代电子技术,2025,48(18):177-186.
关键词:细粒度;遮挡感知;安全帽佩戴检测;目标遮挡检测;小目标检测;卷积神经网络中图分类号:TN911.23-34;TP391 文献标识码:A 文章编号:1004-373X(2025)18-0177-10
Abstract:Inordertocopewith thediversityandcomplexityofpoweroperationscenariosand solvethedificult problemof safetyhelmetsupervision,ansafetyhelmetfine-graineddetectionalgorithmbasedonoclusionperception (EHD-Net)is proposed.Inalusiontotheproblemof insuficientmulti-scalefeatureextractioncapabilityinocclusionscenarios,alarge separablekerelconvoutionmodule(EDKA)basedonocclusionperceptionisproposed,solvingtheisseofiaccuratedetection causedbytheocclusionofsafetyhelmet.Inalusiontotheproblemsoftheinsuffcientfeatureextractionandfusioncapabilityof themodel,aseparationandenhancementattentionmodule (DAAM)isproposed,andanewfeatureamplificationdetectiohead (FA-Head)isconstructed,resolvingtheproblemof poorsmall-objectdetectionperformancecausedbythelimitedmodel receptivefields.Toaddressthemodel'sinsuficientconvergencecapabilityalossfunctionbasedondistanceandscalefactors (DLS-IoU)isproposed,solvingtheproblemofslowconvergencespeedduring training.Inalusiontotheinsuficient generalizationcapability,aschemeoffine-graineddatasetparitioningisproposed,whichcandividethedatasetintofive diferentcategoriesbasedonthenormsofsafetyhelmet wearingandthestatusofthesafetyhelmetchinstrap,therebyenhancing thepracticalaplicationabilityofthemodel.Theexperimentalresultsshowthat,incomparisonwiththebaselinemodel (YOLOv8n),the average accuracy of the proposed algorithm can reach 94.5%,an improvement of 6.3% :
Keywords:fine granularity;occlusion perception;safetyhelmet wearing perception;objectoccusion detection;smallobject detection; convolutional neural network
0 引言
近年来,随着中国电力行业的快速发展,对电力作业安全性的重视逐渐增强1。(剩余15661字)