基于RT-DETR的轻量化交通标志检测算法

打开文本图片集
引用格式:,.基于RT-DETR的轻量化交通标志检测算法[J].现代电子技术,2025,48(18):57-64.
关键词:交通标志检测;轻量化;RT-DETR;ShuffleNetV2;剪枝;知识蒸馏中图分类号:TN911.23-34;TP391.41 文献标识码:A 文章编号:1004-373X(2025)18-0057-08
Lightweighttrafficsigndetectionalgorithmbasedon RT-DETR
WANG Zexuan,LEI Xuemei
(SchoolofElectronic InformationEngineering,InnerMongolia University,HohhotO1oooo,China)
Abstract:Traffcsigndetection playsanextremelyimportantroleintheautodrivesystem,which isdirectlyrelatedtothe safetyofvehicledrivingandtheaccuracyof traffcrulecompliance.Traffcsigndetectionhashighrequirementsfordetection accuracy,speedandeal-timeperformane.Currentlythereisaproblemof diicultyinbalancingdetetionspeedandauracy inthefieldoftraffcsigndetection.Inalusiontothisproblem,thetraficsigndetectionisconductedbasedonreal-time detection Transformer(RT-DETR)objectdetectionalgorithm,whichhasbeteraverage precisionperformance.Inordertofurther improveefciencyandeal-timeperformance,animprovedRT-DETRalgorithmisproposed torealizethemodellightweightand improve thetargetdetectionspeed.InthelightweightRT-DETR,thelightweightnetwork ShufleNetV2isusedtoreplacethe originalResNetnetworkasthebackbonenetworkofRT-DETR,whichreduces theamountofcomputationand parameters while ensuringthelearningabilityofRT-DETR,andimprovethedetectionspeed.Inordertofurtheroptimize model’sperformance, thefine-tuningisconductedbymeansof thesubsequentchannelpruning,quantization,andknowledgedistilation.The experimental results show that RT-DETR being lightweighted can achieve a mean average precision (mAP @ 50) of 97.1% on the CCTSDB2021dataset,withaninference timeof13.7msandamodel sizeof16.9MB.Incomparison with theRT-DETR model withResNet-5Oasthebackbone network,themodel sizeisreducedby89.5%and theinference timeisincreased by 43.62% (202 underthepremiseofensuringtheaccuracywhich makesthemodel morelightweightandefectivelyimproves thedetection speed.Incomparisonwiththecurrntmainstreamsimilarobjectdetectionmethods,italsohasfasterdetectionspeedand higher detection precision.
KeyWords:trafic sign detection; lightweight;RT-DETR;ShufleNetV2; pruning; knowledge distillation
0 引言
随着社会的日益发展与科技水平的不断提升,人们对日常出行体验的期待与需求同步升级。(剩余16309字)