多因素融合下基于AGC-LSTM的短时交通速度预测

打开文本图片集
引用格式:,,,等.多因素融合下基于AGC-LSTM的短时交通速度预测[J].现代电子技术,2025,48(18):9-16.
关键词:智能交通;短时交通速度预测;特征融合;组合深度学习;图卷积网络;长短期记忆网络;注意力机制中图分类号:TN711-34;U491.14 文献标识码:A 文章编号:1004-373X(2025)18-0009-08
Short-time traffic speed prediction based on AGC-LSTM under multi-factor fusion
CHENYujia1,GAOMingxial,XIANGWanli1,MOJunwen² (1.SchoolofTraficand Transportation,Lanzhou JiaotongUniversity,Lanzhou73oo7O,China; 2.School of Economics and Management,Lanzhou JiaotongUniversity,Lanzhou 73oo7o,China)
Abstract:Inorder to more accuratelypredictthe dynamic changes of short-term traffc speed in rapidlychanging urban environments,anexteralfctorsfusecomponent(EF-Component)isonstructedbyconsideringhistoricaldataweatheractors, andsurounding pointsof interest (POIs),andfurther incorporatingroadconditionfactors.Basedontheexisting deplearning model,theurbanshort-termtraffcspeedpredictionmodelintegratinggraph-convolutionalnetwork(GCN),lng-short-rm memory (LSTM)network,andatentionmechanismundertheeffectof multiplefactors,EF-AGC-LSTM(atention-enhancedGCN embeddedLSTMwithmulti-factorfusion)isstudied.TheEF-Componentisusedtosynthesizemulti-influencingfactors,spatio temporal featuresof traffcspeedare extracted bymeansofGCNandLSTM,whichembeds theGCNintothe LSTM gating computation tosynchronouslyobtainspatio-temporalfeaturesofdata,andthenatention mechanismisusedtoautomatically identifyandenhancetheinfluencefeaturesofkeyexternalfactors,soastoimprovetheperformanceofthemodel.Theexample validationonavelocity datasetfrom Luohu District,Shenzhen,Chinawasconducted.Theresultsshowthatincomparison with thebaselinemodel,thepredictioneffctofEF-AGC-LSTMisimprovedgreatly.IncomparisonwiththetraditionalGCN-LSTM model,the meanabsoluteeror(MAE)androot meansquare error (RMSE)of predictionarereduced by4.3%and 3.3%, respectively,and theaccuracyisimprovedby1.4%.The predictedMAEandRMSEarereducedby1.22%and 0.87% respectively,afterintroducingtheroadconditionfactors.Thecomprehensiveconsiderationofmultipleinfluencingfactorscan makethe predictionofshort-termtraficspeedbeimprovedfurther,andtheEF-AGC-LSTMmodelcanwellrealizetheprediction of short-term trafic speed under the fusion of multiple factors to meet the needs of urban management.
Keywords:intellgent transportation;short-term traffcspeed prediction;feature fusion;combinatorialdp learning;graph convolutional network;longand short-termmemorynetwork;attentionmechanism
0 引言
随着城市化进程的加快,城市交通问题日益突出,短时交通速度预测成为智能交通系统(ITS)中的一个关键环节。(剩余11470字)