基于动态图表示学习的轻量化节点分类方法

打开文本图片集
引用格式:,等.基于动态图表示学习的轻量化节点分类方法[J].现代电子技术,2025,48(18):1-8
关键词:动态图;节点分类;图表示学习;分组查询注意力机制;图神经网络;GAM模块中图分类号:TN911.72-34;TP391 文献标识码:A 文章编号:1004-373X(2025)18-0001-08
Method of lightweight node classification based on dynamic graph representation learning
YANQinyu,YANJinghua,BU Fanliang,WANG Yuzhe (CollegeofInformationandCyberSecurity,People'sPublicSecurityUniversityofChina,Beijing1Ooo38,China)
Abstract:Dynamic graph node classification isaclasicdownstream task in the fieldof graphrepresentation learning, aiming topredictthecategoriesofunlabelednodesbymeansofexisting informationindynamicgraphs.However,theexisting dynamicgraphnodeclasification methodsgenerallyhave theproblemofcomputational pressurecausedbythelargescaleand complex structureof themodel.Onthisbasis,amethodoflightweightnodeclasificationbasedondynamicgraphrepresentation learning(LNDG)isproposed.Inthis method,graphencoderisusedtoencodenode,linkandtimeinformationofdynamicgraph, andtheinovativeGAMmoduleisintroduced,whichutilizesthegrouped-queryatention(GQA)mechanismandtheMLP-Mixer method tofurtherlearnrepresentationsinboth temporalandspatialdimensions,achievingcompletecaptureof dynamicgraph features.TheexperimentalresultsonthreepublicclasicdatasetsshowthatLNDG hasanoverallparametersizeofonly0.70MB, which hasbeterAUCvaluesthan thebaseline model,andhas theadvantagesoflightweightand high eficiency.The proposed methodachievesagoodbalanceintermsofoverallsaleandfialefect,andhasgoodcomprehensiveperformanceinthetaskof dynamic graph node classification.
Keywords:dynamic graph;node clasification;graph representation learning;grouped-queryatention mechanism;graph neural network; GAM module
0 引言
节点分类是图表示学习的重要应用之一,受到研究人员的高度关注。(剩余18116字)