一种基于GAN的政务数据中模糊图像复原算法研究

打开文本图片集
引用格式:,.一种基于GAN的政务数据中模糊图像复原算法研究[J].现代电子技术,2025,48(18):134-138.
关键词:政务数据处理;模糊图像复原;生成对抗网络;卷积神经网络;AutoEncoder网络;U-Net网络中图分类号:TN919-34;TP391 文献标识码:A 文章编号:1004-373X(2025)18-0134-05
Research on GAN-based blurry image restoration algorithm in government data
XUANWenjing,ZHANGXinyue (CollegeofTechnology,HubeiEngineeringUniversity,Xiaogan432ooo,China)
Abstract:Governmentdatacontainsalarge amountof imagedata,which playsacrucialroleinrecordingkeyinformation. Thevaguenessoftenappears ingovernmentimages,whichbringsgreat troubletotheextractionandutilizationof information.On thisbasis,agenerativeadversarialnetwork(GAN)basedblurryimagerestorationalgorithm(GovRGAN)isproposed.Inthis algorithm,theGANisusedfortheimagerestoration,whichcanefectivelylearnandrecoverdetailedimageinformationIis composedof generatoranddiscriminator.Thegeneratorof theGANispre-trainedbymeansofthetrainedweightparametersof U-Netnetwork.Theconvolutionalneuralnetworkisusedasthediscriminatortodistinguishbetweenrealimagesandthose generatedbythegenerator.Inodertovalidatethealgorit'sfectiveness,agovermentdatasetwith5OOinvoicevouchersis constructedimingtoprovidesufficientanddiversetrainingsamplesforthemodel.Themotionbluranddefocusblurareused forthedegradationprocesing,making thedataclosertoblurryimagesinreality.Thecomparativeexperimentswereconducted onthisdatasetbetwee GovRGAN,AutoEncodernetwork,andU-Net,verifying thatGovRGANexhibitsexcelentperforancein restoringblurredgovernmentiages,andthequalityoftherestoredimageshasbeenimprovedsignificantlyOnthemotiofuzzy dataset,incomparisonwiththeU-Netnetwork,thePSNRandSSIMvaluesoftheproposedalgorithmareimprovedby9.664dB and 0.157,respectively.
Keywords:government data processing;;blurry image restoration;generativeadversarial network;convolutional neural network;AutoEncodernetwork;U-Net network
0 引言
信息化时代,政务数据对政府决策、服务及监管至关重要。(剩余6760字)