融合注意力的双分支时空卷积脑电识别网络

  • 打印
  • 收藏
收藏成功


打开文本图片集

中图分类号:TN911.7-34 文献标识码:A 文章编号:1004-373X(2025)18-0159-06

DOI:10.16652/j.issn.1004-373x.2025.18.024

引用格式:,,.融合注意力的双分支时空卷积脑电识别网络[J].现代电子技术,2025,48(18):159-164.

Abstract:In alusionto the problemsof weak feature expressionof motor image(MI)electroencephalography (EEG)signals andlowauracyofclassifiationandrecogitionadual-banchspatitempralconvolutionalmotorimageryrecogitionetwork integratingatentionmechanismisproposed.Inordertoaddress theproblemoffewdata,animprovedslidingwindowtechology isproposedforthedataaugmentation.Thedataisfedintothefeatureextractionnetwork,andthedual-branchstructureisused tosimultaneouslyextractthefeatureinboth temporalandspatialaspects.Onthetemporalbranch,multi-scaletemporal convolutionisusedtoextracttempralfeaturesatdiferentscales.Onthespatialbranch,depspatialfeaturesareusedtoextract depth-separableconvolution.Theatentionmechanismisused todynamicallyassignweightstothefusedfeatures.The comparison resultswith other methodsshow that theproposednetwork model hasbeter classfication performance and generalization ability.

Keywords:EEGsignal;motorimagery;multi-scale temporalconvolution;dual-branchstructure;dataaugmentation; attention mechanism

0 引言

脑机接口(Brain-ComputerInterface,BCI)系统可以将脑电信号解码成计算机设备可识别的指令,进而实现大脑活动与外部设备的交互-2]。(剩余8905字)

monitor
客服机器人