改进秃鹰算法优化ELM的短期电力负荷预测研究

打开文本图片集
DOI:10.16652/j.issn.1004-373x.2025.18.017引用格式:,.改进秃鹰算法优化ELM的短期电力负荷预测研究[J].现代电子技术,2025,48(18):107-113.
关键词:短期电力负荷预测;改进秃鹰搜索算法;极限学习机;Piecewise混沌映射;莱维飞行策略;动态权重因子中图分类号:TN86-34;TM715 文献标识码:A 文章编号:1004-373X(2025)18-0107-07
Researchonshort-term power loadforecastingbasedon ELM optimizedbyIBESalgorithm
ZHANG Xu, WANG Fanrong
(SchoolofElectricalandElectronicEngineering,HubeiUniversityofTechnology,Wuhan43Oo74,China)
Abstract:Inalusiontotheincreasinglycomplexpowerenvironmentatthepresentstage,andtheshort-termpowerload forecasting methodshavelowforecastingaccuracyandslowconvergencespeed,ashort-termpowerloadforecasting modelbased onextremelearning machine(ELM)optimizedbyimprovedbaldeaglesearch (IBES)algorithmisproposed.Theoriginalbald eaglesearch(BES)algorithmispronetofallintolocaloptimumwhendeterminingtheconnectionweightsandimplicitlayer thresholdsintheELM,andtheconvergencespeedisslow,whichresultsintheporpredictionaccuracy.Onthisbasis,the Piecewisechaoticmapping isusedtoinitilizethebaldeaglepopulationandincreasethediversity.TheLevyflightstrategyis introduced toexpandthesearchrangeof thepopulation,sothatitcanjumpoutof thelocaloptimumintime.Thedynamic weightingfactorisintroducedtoimprovethelocalsearchabilityofbaldeagle.TheIBESalgorithmisusedtooptimizethetwo stochasticparametersofELM,soastoestablishtheBES-ELMshort-termpowerloadforecastingmodel.Teforecastinganalsis is conductedbycombining withtheactualpowerloaddataofaregion.Theresultsshowthat,incomparison withELM,BESELM,PSO-ELM,andDBO-ELM,the improved model has animprovement in forecasting accuracyand convergence speed.
Keywords:short-termpowerloadforecasting;IBES;ELM;Piecewisechaoticmapping;Levyflightstrategy;dynamic weighting factor
0 引言
电力负荷预测是指综合利用历史负荷数据、气象数据、经济数据等相关信息,预测未来一段时间内电力负荷的变化趋势和具体数值,为电力系统运行和规划提供依据。(剩余7228字)