一种融合神经与遗传的食物推荐算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:食谱推荐;食物选择;双种群遗传算法;神经网络;多目标优化;禁忌搜索算法中图分类号:TN911.23-34;TP391.3 文献标识码:A 文章编号:1004-373X(2025)10-0173-06

Abstract:Peoplepaymoreandmoreatentiontothenutritionandbalanceoftheirdiet,thedemand forfood choices is also higher.Inalusiontotheproblemsoflackofnutrientbalance,lackof diversityandtime-consumingformulationofexisting recipes,adoublepopulationneuralnetwork-geneticalgorithm(DDNT-GA)algorithmisconstructedbyfusingneural networksand combiningdual-populationgeneticalgorithmNSGA-Itogeneratespecificrecipes.Inthisalgorithm,theneuralnetwork isused tolowerthefitnessofoverlyfitindividualstoeffectivelypreventflingintolocaloptima.Individualswithlowfitessare removedtoformanelitestrategy,screenoutthemostsuitable individuals,andimprovetheeficiencyofthemodelwhile achievingfoodnutritionbalance.Byoptimizingtheneuralnetworkandintroducing theregularizationDropoutstrategy,the trainingspeedisimproved.ByusingtheimprovedNSGA-Igeneticalgorithmandincorporatingthedual-populationidea,the taboosearchalgorithmisusedinthesub-populationtoprevent thegenerationofsimilarrecipesbymeansofthetaboolist,soas torealizetherecipediversification.Theexperimentalresultsshowthat,incomparisonwithdepgeneticalgorithms(GA-D,BPGA,NT-GA,JANUS),DDN-GAalgoritmcanincreasethefitnssby11.3%andshortenthetrainingtie.Theresultingipe notonlyhasdiversechangesinfoodombinationsbutalsoimprovestheefiiencyofselectingrcipes,andhasertainpractical value in consumer recipe formulation.

Keywors:reciperecommendation;foodselection;dual-populationgeneticalgorithm;neural network;multi-objective optimization; taboo search algorithm

0 引言

随着经济全球化和城市化步伐的快速推进,社会生活节奏亦随之加快。(剩余8495字)

monitor