基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测

打开文本图片集
中图分类号:TN911.7-34;TM614 文献标识码:A 文章编号:1004-373X(2025)10-0057-06
Abstract:Withthehighpenetrationofrenewableenergy,especiallywind power,thepowergrid isfacingunprecedented chalengesofuncertaintyandvolatity.Inordertoacuratelypredictwindpower,acombinedmodelbasedonimproved completeensemble empirical mode decompostionwith adaptivenoise (ICEEMDAN)-permutation entropy(PE)-improved dung beetle optimizationalgorithm(GDBO)-least support squaresvector machine (LSSVM) isproposed.ICEEMDANis used to decompose thewindpowerdata toreducethecomplexity.Thecomponentsobtainedafterdecompositionareagregatedaccording toPE,andthenthekeyparametersofLSSVMareoptimizedbymeansofGDBOalgorithm toobtain thebestpredictionmodel. Theoptimizationmodelisusedtopredictandsuperimposetheaggregationcomponents toobtain the totalpredictionresult.The experimentalverification isconductedbasedonthedomesticwindfarmdataset.Ttheresultsshowthattheproposed method has high predictionaccuracyandtheroot meansquare errris 61.39%lowerthan thatofthesingle LSSVMmodel,whichhasa broader application prospect in engineering practice.
Keywords:wind power prediction; ICEEMDAN; GDBO; PE;improved complete ensemble empirical mode decomposition; LSSVM; component polymerization
0 引言
随着社会对环境保护和可持续发展的重视程度不断提升,清洁能源产业正经历前所未有的蓬勃发展。(剩余6339字)