基于动态提示池的股票趋势预测终身学习算法

打开文本图片集
中图分类号:TN919-34;TP391 文献标识码:A 文章编号:1004-373X(2025)10-0063-08
DOI:10.16652/j.issn.1004-373x.2025.10.011 引用格式:,,,等.基于动态提示池的股票趋势预测终身学习算法[J].现代电子技术,2025,48(10):63-70.
Abstract:Stockdatabelongs tostreamingdatawithadistributionthatchangesovertime,making itextremelychallenging topredictstocktrends.Existingforecastingmethodsadapttothelatestdatadistributionbyretrainingmodelsonarollngbasis, neglectingrepetitivepaternsinhistoricaldata,resultingincatastrophicforgetingandadecreaseinmodelprediction performance.Toaddressaboveissue,aPoolTrainalgorithmisproposed.Inthisalgorithm,theknowledge learnedfromeach retrainingofthemodelisstoredinadynamichintpool,alowingittorememberoldknowledgewhilelearningnewtasks. Acordingtotheknowledgeinthedynamicselectioncombinationhintpol,thecommon hintscancompletediferentdata distribution tasks.TheexperimentalresultsontheCSI3OOdatasetshowthat,incomparisonwiththecurrentoptimalalgorithm DDG-DA,thePooTrainalgorithmcanimprovetheinformationcoefficent (IC),informationcoeffientratio(ICIR),rank informationcoefcient(RankIC),andrankinformationcoeffcientratio(RankICIR)by11.5%,11.41%,0.2%,and34.69%, respectively.Itshowsthattheproposedalgorithmcanrealizebeterresultsinpredictingstock trends,providingvaluable reference information for investors.
Keywords:stock trendprediction;dynamiccuepol;lifelong learning;rollingtraining;corelationcoefficent;information coefficient
0 引言
股票趋势反映着国家的宏观经济政策,影响着投资者的经济利益,预测股票趋势已成为机器学习领域的研究热点之一]。(剩余13418字)