基于自适应卡尔曼滤波的生理电信号降噪方法

打开文本图片集
中图分类号:TN911.7-34 文献标识码:A 文章编号:1004-373X(2025)10-0039-06
Abstract:Duringthemeasurementof physiologicalelectricalsignals,thetargetsignalisoftendisturbedbyvariousnoises, includingexteralelectromagneticfieldinterferenceandotherinternalphysiologicalelectricalsignalinterference,themost seriousof whichispowerfrequencyinterference.Thesenoiseinterferenceswillbringgreatinconvenience totheanalysisand processingof physiologicalelectricalsignals.Therefore,anoisereductionmethodbasedonadaptiveKalmanflterisproposedto eliminate thenoiseinterferencesuchaspowerfrequencymixedinphysiological electrical signals.Theadvantagesofadaptive filteringindynamicweightadjustmentandtheacuracyofKalmanfiteringinstateestimationarefullyused toaccurately identifyand processtargetsignalsandnoises.Theelectrocardiogram (ECG),theelectroculogram(EOG)andtheelectromogram (EMG)collctedintheordinary experimentalenvironmentareprocessed,andthetimedomainwaveformandspectrumbeforend afterthealgoritproessingiservd,soastotestfoeectivenesoftedaptiveKalmanfierinteoiseduction ofphysiologicalelectrical signal.TheresultsshowthatthedesignedadaptiveKalman filtercanefectivelyeliminatenoise interferencesuchaspowerfrequency(includingfundamentalfrequencyandharmoniccomponents),makethetargetsignalclearer andcleaner,anddonotdamage theusefulcomponentsofthetarget signal.Theaverage decreaseof thespectralvalueat 50Hz (204号 is notlessthan49.31dB.TheadaptiveKalmanalgorithmcanbeapliedtoavarietyofdiferentphysiologicalelectricalsignals onlybyadjustingsome parameters,whichcaneffectivelyfilteroutthepowerfrequencyandother noiseinterferencemixed inthe originalsignal.Thenoisereductionperformanceisstableandthecomputationalcomplexityislow,whichprovidesamore effective solution for the analysis and processing of physiological electrical signals.
Keywords:adaptivefilter;Kalmanfilter;physiologicallectricalsignal;EOG;powerfrequencyinterference;noiseduction
0 引言
人体的生理电信号,如心电信号(Electrocardiogram,ECG)、肌电信号(Electromyogram,EMG)等,能直接反映身体健康状况,因此被作为评估人体一些生理功能的重要参数,为远程医疗、实时监控、医学检测以及新兴的脑-机接口等领域提供了重要的研究基础[1-3]。(剩余7467字)