基于CMA-ES算法的无人机群协同救援任务分配优化

  • 打印
  • 收藏
收藏成功


打开文本图片集

DOI:10.16652/j.issn.1004-373x.2025.10.015 引用格式:,,.基于CMA-ES算法的无人机群协同救援任务分配优化[J].现代电子技术,2025,48(10):92-96.

关键词:CMA-ES;无人机;协同任务分配;优化算法;目标函数;约束条件;最大航程中图分类号:TN820.4-34;TP273 文献标识码:A 文章编号:1004-373X(2025)10-0092-05

Abstract:Thealocationof rescue tasksshouldnotonlyconsider theshortest navigation distanceof unmannedaerial vehicle(UAV),butalsominimizetheaveragewaitingtimeofsurvivors,whichisamulti-objectiveoptimizationproblem.Inoder tofindtheoptialsoutioninmulti-objectivesenarios,amethodofcolaborativerescuetaskallcationotimizationbasedon covariance matrixadaptationevolutionarystrategy(CMA-ES)algorithmforUAVswam isproposed.Taking theaverage waiting timeand theshortestsailing distanceasobjectivefunctions,andconsideringconstraintssuchasthemaximumsailingdistance, taskcounts,colaborativeplanningandloadcapacityofUAV,aCMA-ESalgorithmisusedtofindtheoptimalsolutionof the objectivefunctionbymeansoftheparameteroptimization mechanismbasedonnormaldistributioninmultidimensional space, efectivelyresolvingconflictsbetweendiferentobjectivesandachievingmulti-objectivetaskalocationoptimization.The experimentalresultsshowthattheproposedmethodcanalocaterescuetasksreasonably,andensurethatsurvivorscanquickly obtain supplies. The UAV navigates an average of 48.7 km,survivors wait an average of 33.4min ,and rescue tasks are completed in an average of 61.2min

Keywords:CMA-ES;UAV;colaborativetask allcation;optimizationalgorithm;objective function;constraintcondition; maximum flight distance

0 引言

在紧急救援任务中,无人机群展现出了巨大的潜力和价值。(剩余5193字)

monitor