YOLOv7-VSS轻量化橘瓣外观检测模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

DOI:10.16652/j.issn.1004-373x.2025.10.014 引用格式:,等.YOLOv7-VSS轻量化橘瓣外观检测模型[J].现代电子技术,2025,48(10):85-91.

中图分类号:TN911.23-34文献标识码:A

文章编号:1004-373X(2025)10-0085-07

Abstract:Inallusion to the problems of slow speedandlowaccuracyof orange petal appearance detection in canned citrusproduction,aswellasthehigherparametercountofmainstreamdetectionmodels,alightweightorangesegment appearancedetectionmodel,OO-,ispropsed.Inthemodel,animprovedEcientVietworkisitroducedbysing theHardSwish activation function as the backbone.The mapping similaritybetween diferentdetection heads isreduced by inputingfeaturesatdiferentlevels,whichaleviatesredundantcalculations,andenhancesthenetwork'sfeatureextraction capability bymeansofcascaded groupatention mechanism.Aslim-neck modulethat fuses thepropertiesof standard convolutionanddeepseparableconvolutionisreferenced toreducethesizeofthemodelwhilemaintaining highaccuracy.In orderto furtherreduce the model sizeandspeedupinference spee,SPPCSPC isreplaced with the SPPFstructure.Inorderto alignwiththepositionalcharacteristicsoforangesegmentsinthedataset,theMPDIoUlossfunctionisusedtoimprovethe regresionacuracyof the predicted bounding boxes.The experimentalresults showthatthe proposedorange segmentappearance detection model is63.81%smalerin size compared to YOLOv7,whilerealizing a detectionaccuracyof 96.57% .After deploymentandtestingontheJetsonOrinNano,thebalancebetweenmodelsizeanddetectionaccracyissignificantlymproved compared to similar methods,meeting the requirements of the canned citrus production line.

Keywords:orange segment appearance detection;YOLOv7; lightweight;EficientViT; GSConv; Hard-Swish;MPDIoU

0 引言

柑橘罐头是我国柑橘加工产业中最大宗的商品,其柑橘罐头加工量占世界总产量的 80% 以上。(剩余8786字)

monitor