融合数字孪生与声纹识别的矿用机电设备故障诊断技术

打开文本图片集
中图分类号:TN911.7-34;TP391.9 文献标识码:A 文章编号:1004-373X(2025)10-0052-05
Abstract:In alusion totheproblem that mining electromechanical equipmentisprone to faultsincomplex working environments,thedigital twin technologyofcomputermappng physical entitiesandfaultvoiceprint featurerecognition technologyareresearched,ndamulti-architectureintellgentfaultdagnosissystemforminingelectromechanicalquipment frombotom toappicationisproposed.Intheoverallarchitectureoftheproposedfaultdiagnosissystem,thedigitaltwinthat includesbehavior models,geometric models,rulemodelsand physical models,aswellassensorsandedgedataprocessing modulesrequiredforvoiceprintrecognitionareconstructedinthebottomplayer.Theupperlayerisdividedintodatalayer, systemlayerandapplicationlayer,whichareused torealizefunctionssuchasdataprocesing,modelanalysisandhumanmachineinteraction.Basedondigitaltwinsystem,voiceprintfeatureextractionalgorithm,andextremelearning machineneural network,akeyalgorithmflowintegratingdigitaltwinandvoiceprintrecognitionisdesigned.Theexperimentaltestingresults showthatthephsicalparametererorofdigitaltwinsimulationislow,andtheacuracyoffaultidentificationcanreachabout 90% ,which can meet the needs of engineering applications.
Keywords:mineelectromechanicalequipment;digitaltwin;voiceprintrecognition;faultdetection;inteligentdiagnosis; featurerecognition
0 引言
目前,煤炭能源是我国最主要的能源类型之一,在煤炭开采过程中,矿用机电设备稳定运行是保证安全生产的前提。(剩余4902字)