基于LeNet-RES的室内声源区域定位算法

  • 打印
  • 收藏
收藏成功


打开文本图片集

关键词:室内声源定位;麦克风阵列;神经网络;相位变换加权广义互相关函数;信号处理;房间脉冲响应中图分类号:TN912-34;TP183 文献标识码:A 文章编号:1004-373X(2025)10-0020-05

Abstract:Undertheconditionsoflowsignal-to-noiseratio(SNR)andhighreverberation,indorsoundsourceregional localizationbecomesmorechalenging.Inordertosolvethisproblem,aneuralnetworkLeNet-RESisdesigned,whichuses residualblockstoimproveLeNet,therebyimprovingtheperformanceofthenetwork.Thedatasetforindoorsoundsourceis obtainedbysimulating theroomimpulseresponseofan8-araycuboid microphonearay.Thesignalreceivedbythemicrophone is processed intoframes,ndthegeneralizedcrosscorelationPHAse transformation (GCC-PHAT)betweeneachframesignalsis calculated.Thisfunctionisarrngedintotwo-dimensionaldataasinputfeatures.Thefialnetworkmodelistrainedbytakigthe rompartitionarealabelasthenetworkoutput.Intheexperiment,thepositioningaccracyofthetwoneuralnetworkswas tested whenthenumberofroompartitionswas8and16,respectively.Theresultsshow thatunder thesameSNRconditions,the accuracyofLeNet-RES-16is 81.33% when thenumber of room partitionsis16 and the reverberation time is O.6s,which is 23% higherthanthatofLeNet-16;underthesamereverberationconditions,theaccuracyofLeNet-RES-16is84.16%whenthe numberofpartionsis16andtheSNRisO,whichis29%higherthanthatofLeNet-16.Theregionallocalizationperformanceof LeNet-RES is better than that of LeNet under various SNR and various reverberation times.

Keywords:indoorsound sourcelocalization;microphonearray;neural network;generalizedcrosscorelation PHAse transformation; signal processing;room impulse response

0 引言

传统室内声源定位采用麦克风阵列信号处理算法来实现,被广泛应用于智能家居、安防监控、大型会议、车载系统等多个领域[1-5]。(剩余7727字)

monitor