面向知识图谱的网络信息自监督强化学习推荐模型

  • 打印
  • 收藏
收藏成功


打开文本图片集

引用格式:.面向知识图谱的网络信息自监督强化学习推荐模型[J].现代电子技术,2025,48(10):142-146

关键词:知识图谱;网络信息;自监督;强化学习;推荐模型;交互信息;特征提取;相似度计算中图分类号:TN711-34;TP182 文献标识码:A 文章编号:1004-373X(2025)10-0142-05

Abstract:Inorder todeeplyunderstandandmine thebehavioralcharacteristicsof user historicalnetworkinteraction information,dynamicallextractchangesinuserinteractionbehaviorandachievepersonalizedrecommendationofnetwork information,aknowledgegraph basednetwork informationself-supervisedreinforcementlearningrecommendationmodelis constructed.Inthemodel,aknowledgegraphofusernetworkinformationinteractionbehaviorisonstructedtoclearlydisplay user'shistoricalnetwork information interactionbehavior.Thedynamicchangesofuserbehaviorintheknowledgegraphcanbe capturedefectivelybymeansofthefeatureextractionmodelbasedonself-supervisedreinforcement learningtoavoidthe negativeimpactofpopularityias,soastoextractthefeaturesof historicalnetworkinteractioninformation.Basedonknowledge graphsimilaritycalculation,thenetworkinformationentitieswithsimilarfeatures touserhistorical interaction informationare recommendedtorealizetheaccurateandpersonalizedrecommendations.Theexperimentalresultsverifiesthatafter recommending online movie information resources to users,the click play conversion rate can reach 96.83% ,and the personalized recommendation effect of online information is improved significantly.

Keywords:knowledgegraph;network information;self supervision;reinforcement learning;recommendationmodel; interactive information; feature extraction; similarity calculation

0 引言

随着社交媒体、电子商务和在线视频等领域的繁荣发展,网络信息呈现出多样化、海量化和快速更新的特点,这使得用户难以从海量信息中筛选出符合自己兴趣和需求的内容。(剩余5834字)

monitor